369 research outputs found

    Indirect Detection of Neutralino Dark Matter with Neutrino Telescopes

    Get PDF
    Principle of neutralino dark matter detection with neutrino telescopes and predictions are reviewed. The future Antares detector is described. Prospection in the CMSSM is exposed including comparison with experiment sensitivities of both neutrino indirect detection and direct detection experiments. Results in other frameworks are shortly surveyed. Models with a non negligible neutralino higgsino fraction are promising for neutrino telescopes detection.Comment: Talk given at SUSY02, Desy, Hambourg, Germany June 17-2

    Neutrino Indirect Detection of Neutralino Dark Matter in the CMSSM

    Full text link
    We study potential signals of neutralino dark matter indirect detection by neutrino telescopes in a wide range of CMSSM parameters. We also compare with direct detection potential signals taking into account in both cases present and future experiment sensitivities. Only models with neutralino annihilation into gauge bosons can satisfy cosmological constraints and current neutrino indirect detection sensitivities. For both direct and indirect detection, only next generation experiments will be able to really test this kind of models.Comment: 16 pages, 19 figures; v4: a few clarifications and significant improvement of reference

    Indirect Detection of CMSSM Neutralino Dark Matter with Neutrino Telescopes

    Full text link
    We review the prospects of detecting supersymmetric dark matter in the framework of the Constrained Minimal Supersymmetric Standard Model, and compare indirect with direct detection capabilities.Comment: 6 pages, 4 figures, presented by J. Orloff at the York IDM02 workshop (http://www.shef.ac.uk/~phys/idm2002

    Neutrino Mass Patterns within the See-saw Model from Multi-localization along Extra Dimensions

    Full text link
    We study a multi-localization model for charged leptons and neutrinos, including the possibility of a see-saw mechanism. This framework offers the opportunity to allow for realistic solutions in a consistent model without fine-tuning of parameters, even if quarks are also considered. Those solutions predict that the large Majorana mass eigenvalues for right-handed neutrinos are of the same order of magnitude, although this almost common mass can span a large range (bounded from above by ∌1012GeV\sim 10^{12}{\rm GeV}). The model also predicts Majorana masses between ∌10−2eV\sim 10^{-2}{\rm eV} and $\sim 5 \ 10^{-2}{\rm eV}fortheleft−handedneutrinos,bothinthenormalandinvertedmasshierarchycases.Thismassintervalcorrespondstosensitivitieswhicharereachablebyproposedneutrinolessdouble for the left-handed neutrinos, both in the normal and inverted mass hierarchy cases. This mass interval corresponds to sensitivities which are reachable by proposed neutrinoless double \betadecayexperiments.Thepreferredrangeforleptonicmixingangle decay experiments. The preferred range for leptonic mixing angle \theta_{13}is: is: 10^{-2} \lesssim \sin \theta_{13} \lesssim 10^{-1}$, but smaller values are not totally excluded by the model.Comment: 36 pages, 8 figure

    Decaying dark matter: a stacking analysis of galaxy clusters to improve on current limits

    Full text link
    We show that a stacking approach to galaxy clusters can improve current limits on decaying dark matter by a factor ≳5−100\gtrsim 5-100, with respect to a single source analysis, for all-sky instruments such as Fermi-LAT. Based on the largest sample of X-ray-selected galaxy clusters available to date (the MCXC meta-catalogue), we provide all the astrophysical information, in particular the astrophysical term for decaying dark matter, required to perform an analysis with current instruments.Comment: 6 pages, 3 figures, supplementary file available on demand, accepted for publication in PR
    • 

    corecore